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FLIGHT INVESTIGATION TO EVALUATE : THE ROLL-RATE 

STABILIZATION  SYSTEM OF TKE NAVAL 
. .  

TEST  STATION  SIDEWINDER MISSIU AT 

MACH NUMBERS FROM o .g TO 2.3 
By  Clarence A. Brown, Jr., and  Martin  L.  Nason 

SUMMARY 

A flight  investigation  using a rocket-powered  model  has  been  made 
to  evaluate  the  roll-rate  stabilization  of  the  Naval  Ordnance  Test  Station 
SIDEWINDER  missile.  This  missile  utilizes  aerodynamic  damping  by  gyro- 
actuated  rollerons.  Preliminary r o l l  analysis  indicated  that a high- 
frequency  dynamic roll instability  would  be  produced  by  the  rollerons. 

This  investigation  indicated  that a dynamic  roll  instability  occurred 
in  flight.  The  results  also  indicated  that a dynamic  roll-rate  stabiliza- 
tion  system  roll-rate  stabilized  the  missile  within f20 degrees  per  sec- 
ond  through  the  proposed  operating  Mach  number  range  of 0.9 to 2.3. The 
rollerons  also  prevented  the roll angle  oscillation  of  the  model  from 
exceeding +5O, with a.n undesirable  feature  being  the  self-sustained r o l l  
velocity  oscillation. 

The prelhinary analytical  study  indicated  some  system  modifications 
which  may  eliminate  the  dynamic  instability  of  the  oscillatory  roots. 
These  are  enumerated  as  follows: 

(a)  Increasing  the  control  surface  damping. 

(b) Decreasing  the  angular  momentum  of  the  gyro  wheel. 

(c)  Decreasing  the  control  surface  effectiveness or increasing  the 
spring  constant  of  the  control  surface. 

Since  modifications  (b)  and  (c)  would  decrease  the  roll-rate  stabilization 
effectiveness,  these  changes  may  not  be  acceptable;  therefore,  further 
research  seems  necessary  to  evaluate  modifications  (b)  and  (c). 
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INTRODUCTION 

A t  the  request of the Bureau of Ordnance, Department of the Navy ,  the 
Langley P i lo t less   Ai rcraf t  Research  Division  has  initiated a program t o  
inves t iga te   the   s tab i l i ty  of the Naval Ordnance Test  Station SIDEWINDER 
missile. This  missile  uti l ized aerodynamic damping by gyro-actuated 
ailerons,  hereafter  called  rollerons.  Airstream-impelled gyro wheels, 
housed inside  the  roll   control  surfaces,  comprise the complete roll s ta -  
b i l i za t ion  system; therefore, no reference or rate-gyro  roll   control 
systems are  required. These roll control  surfaces  are  located a t  the 
t ra i l ing-edge  t ips  of the  trapezoidal wings of the model. Specifications 
for  the  design of t he   ro l l   con t ro l  system are  given i n  reference 1. 

Preliminary roll analysis of this   missi le   indicated that a high- 
frequency dynamic r o l l   i n s t a b i l i t y  would be  produced by this   type of 
ro l l - r a t e   s t ab i l i za t ion  system.  This  paper  presents  the r e su l t s  of t h i s  
ro l l   ana lys i s  and the   resu l t s  of t he   f l i gh t   t e s t   i nves t iga t ion   t o  con- 
firm the  roll   studies  through a Mach  number range of 0.9 t o  2 . 3 .  Ref - 
erence 1 gives  the  resul ts  of a preliminary  evaluation of a ro l l - ra te  
s t ab i l i za t ion  system s imi la r   to   the  one used i n   t h i s   t e s t .  

The model used i n  this investigation was similar t o   t h e  Naval 
Ordnance Test  Station  missile  described  in  reference 2. The differences 
between the  present Naval Ordnance Test  Station SIDEWINDER missile and 
the one used in   t h i s   i nves t iga t ion  i s  a 3-inch section added ahead  of 
the  canard  control  surfaces. 

F l igh t   t e s t  of t h i s  model was conducted a t   t h e  Langley P i lo t less  
Aircraft  Research S ta t ion   a t  Wallops. Island, Va. 

SYMBOLS 

R 

X 

V 

t 

M 

v 

Reynolds number, vx 

length of model, f t  

kinematic  viscosity,  sq  ft/sec 

t i m e ,  sec 

Mach  number 

velocity of model, f t / s ec  

dynamic pressure,  lb/sq f t  - 
. 



cp model r o l l  angle, deg 

4 roll ing  velocity of model, deg/sec 

@m mean value of roll velocity  envelope of model, deg/sec 

"ti, ro l l   ve loc i ty  frequency,  cps 

CD 

'b 

2 

d 

SR 

L 

H 

WC 

LD 

mR 

drag  coefficient, - Drag 
qsb 

cross-sectional  area of fuselage,  sq f t  

distance from model center   l ine  to   rol leron  center  of 
gravity, f t  

distance from rolleron  center of grav i ty   to  rolleron 
hinge l i ne ,  f t  

rolleron  angular  deflection, radian;; 

ro l l ing  moment, f t - l b  

rolleron  hinge moment, f t - l b  

gyro-wheel  angular  velocity,  radiansysec 

load  disturbance i n  roll, f t - l b  

mass of rolleron,  slugs 

IG moment of i n e r t i a  of gyro  wheel  about spin axis, slug-ft2 

IR 

IX 

moment of i n e r t i a  of rolleron  about  hinge  line,  slug-ft2 

moment of i n e r t i a  of missile  about roll axis,   slug-ft2 

H?R 
rolleron-hinge-moment  parameter, - 3H f t -lb/radian 

rol leron control effectiveness  parameter,  ft-lb/radian 
3%' 
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L missi le  roll damping, - ft-lb/radian/sec 
ip & aL 

H!R 
rolleron  control  surface damping, - aH ft-lb/radian/sec 

ah' 
D = -  d 

d t  

A dot  over a symbol denotes a derivative with respec t   to  t h e .  

APPARATUS AND METHODS 

Model Description 

Sketches of the rocket-powered model used i n  this t e s t   a r e  shown i n  
f igure 1. Sketches of the  canard  surface and w i n g  surface  with  attached 
rol leron  are  shown i n   f i g u r e  2.  Photographs of the model and rollerons 
are  shown i n   f i g u r e s  3, 4, and 3 .  

The body of the model had a maximum diameter of 3 inches  with a 
f ineness   ra t io  of  21.33. The fuselage was cyl indrical  w i t h  a spherical  
nose  section. The nose section  consisted of a 2.6-inch-radius  spherical 
segment that was faired  into  the  5-inch-diameter body. The canard sur- 
faces were located on the  cylindrical   portion of the model. (See f i g s .  1 
and 3. ) The canard  surfaces were of 66' 37' delta-wing  plan form w i t h  a 
modified  single-wedge a i r fo i l   s ec t ion  having a constant  thickness of 
0.125 inch  ( f ig .  2 ) .  The canard  surfaces were welded to   the   s tee l   sk in  
and fixed a t  a zero angle of incidence. The w i n g s  were of trapezoidal 
plan form w i t h  the  leading edge swept back 45' ( f ig .   2 ) .  The wing had a 
modified  hexagonal a i r fo i l   s ec t ion   w i th  a constant  thickness  corresponding 
t o  a thickness  ratio of 1.2 percent a t  the wing-body juncture. The r o l l -  
ra te   s tab i l iza t ion   cont ro ls ,   tha t  is ,  the  rollerons,  were located  a t   the  
t ra i l ing-edge  t ips  of the model wings (f igs .  2 and 4) .  The rollerons were 
rectangular  in shape  and  each rolleron  casing was designed t o  accommodate 
a gyro wheel 3 inches i n  diameter ( f ig .  2 ) .  The gyro wheels were con- 
s t ructed of s t e e l  and the  periphery of each  gyro wheel was notched wi th  a 
s e r i e s  of 24 buckets. The rollerons were designed t o  be f r e e   t o  move 
about  the  rolleron hinge l i n e  w i t h  negl igible   f r ic t ion.  . 
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Pref l ight  Measurements and Checks 

The values  determined by pref l ight  measurements are   as  follows: 

Weight, l b  (model sustainer  loaded) . . . .  
Weight, l b  (model sustainer empty) . . . .  
Moment of i ne r t i a :  

Model, sustainer empty, Iy, slug-ft2 . . 
Model, sustainer empty, Ix, slug-ft2 . . 

Center-of-gravity  location, model sustainer 
in .  from nose . . . . . . . . . . . . . .  

Center-of-gravity  location, model sustainer 
i n .  from nose . . . . . . . . . . . . . .  

. . . . . . . . . .  .148.5 . . . . . . . . . .  .105.0 

. . . . . . . . . . .  31.08 

. . . . . . . . . . .  0.30 

empty, . . . . . . . . . . .  49.75 

. . . . . . . . . . .  55.63 
loaded, 

Prior to t h e   f l i g h t   t e s t  of the model, the gyro wheels of the   ro l l -  
erons were given  an i n i t i a l   r o t a t i o n a l  speed.  Although  the  rotational 
speed of the  gyro wheels  corresponding t o  a typical  operational  launching 
condition of th i s   miss i le  i s  unknown, t h e   i n i t i a l  speed  given  the  gyro 
wheels i s  probably  closer  to  the  actual  launching  rotational  speed of the 
gyro wheel than i f  no initial rotat ional  speed  had  been  applied. The 
i n i t i a l   r o t a t i o n a l  speed of the  rollerons was accomplished by applying a 
source of a i r   t o  each of the  rollerons  while  the model was  on the  launcher 
and allowing t h i s   a i r  supply to   tu rn   the   ro l le rons   un t i l   the  model had 
moved clear  of the  launcher.  Figure 5 shows the model and booster on the 
launcher  and  the  arrangement  used t o  apply  the  air   to  the  rollerons  prior 
t o  launching. 

Instrumentation 

The model was equipped  with a n  NACA four-channel  telemeter which 
transmitted a continuous  record of the normal and transverse  accelera- 
t ions,  and r a t e  of  yaw, and r a t e  of rol l   obtained from ra t e  gyros. 

Model velocity w a s  obtained from the CW Doppler radar and the model 
t ra jectory was determined  through  use of a modified SCR-584 radar  tracking 
uni t .  A radiosonde  released a t   t h e  time of f l i g h t  w a s  used to   ob ta in  
atmospheric  data  throughout  the a l t i t ude  range  transversed by the model. 

ACCURACY 

The accuracy of the  results  considering  possible  cumulative  errors  in 
radar and telemeter data is  believed  to be within  the limits l i s t e d  below: 

” 

c, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.05 
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The measured response of the two r a t e  gyros  used t o  measure r a t e  of 
roll and r a t e  of yaw are as follows: 

Undamped natural  
frequency, 

CPS 

Rate  of yaw 50 70 * 5 

Rate of r o l l  70 I f r  5 50 

Percent c r i t i c a l  
damping 

Although a dynamic e r ror  may exist   in  these  instruments,   the  fre- 
quency of the   osc i l la t ion  and the mean amplitude are essent ia l ly  
unaffected. 

METHOD OF ANALYSIS 

A n  analysis method was adopted which ind ica t ed   s t ab i l i t y  by u t i l i z i n g  
char t s   re la t ing   the   s tab i l i ty  boundary t o   t h e  aerodynamic hinge-moment 
parameter H and the  rolling  effectiveness  parameter LER. These charts 

have  been drawn for three  values of rolleron  control  surface damping 
= -0.10, -0.50, and -1.0 ft-lb/radian/sec) and for  the  expected 

6R 

operating  range of the  missile roll damping L -  = -0.05 and 
-5.0 ft-lb/radian/sec) and gyro-whee.1 spin  ra tes  of 10,000, 60,000 and 
100,000 rpm.  The equations of motion on which the  stability-boundary 
p lo ts   a re  based are  given  as follows: 

( 9  

Hinge moment : 

Rolling moment : 

.. 
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This  analysis  is  subject  to  the  following  limitations: 

(a)  The  aerodynamic  forces  and  moments  are  assumed  to  depend  linearly 
on  their  respective  variables  and  are  assumed  to  be  independent  of  the 
frequency  of  oscillation. 

(b)  The  angular  momentum  vector  of  the  gyro  wheel  is  essentially 
perpendicular  to  the  plane  of  the  wing, cos S, = 1.0. 

(e) No pitching  or  yawing  motion  of  the  missile  is  present. 

(d) No longitudinal,  lateral,  or  normal  acceleration  of  the  missile 
are  present. 

The  formulation  of  the  stability  conditions  from  the  equations  of  motion 
is  given in appendix A. Charts  of  this  type  may  be  utilized  to  examine 
the  effect  of  various  system  parameters  on  the  static and dynamic  char- 
acteristics  of  the  overall  system and may  also  be  used  as  a  basis  for 
system  improvements.  Although  this  analysis  is  oversimplified,  trends 
obtained on the  basis  of  the  above  assumptions  should  be  valid. 

TEST 

The  primary  purpose  of  the  flight  test  conducted on this  missile  was 
to  determine  the  stability of the  roll  stabilization  system  in  operational 
use.  Since  the  stability  of  the  system  was  shown  to be marginal  by  the 
preflight  analysis,  no  provision  was  made  to  introduce  a  rolling-moment 
disturbance.  The  effectiveness  of  the  system  for  overcoming  induced 
rolling  moments  was  therefore  not  obtained. 

Performance  specifications  (ref. 1 and unpublished  data)  relative 
to  the  stability  of  the  roll  system  are: 

(1) Steady-state  damped  roll  rate  must  be  less  than 1 radian/sec 
for  a  rocket  subject  to  the  following  design  limits: 

(a)  Altitude,  sea  level  to 40,000 feet 

(b)  Mach  number, 1.2 to 2.5 

(2) Mean  lifetime of transient-roll  period  must  be  less  than 
0.2 second. 

The  model  was  boosted  to  supersonic  velocities by a  solid-propellant 
rocket  motor  which  delivered  approximately 6,000 pounds of thrust  for 
3.0 seconds. A sustainer  motor,  made  as an integral  part  of  the  model, 
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delivered  approximately 3,000 pounds of t h rus t   fo r  2.6 seconds  and pro- 
pelled  the model t o   t h e  peak Mach  number of  2.3. The model w a s  launched 
from the ground a t  an  angle of approximately 60° to   the  horizontal .  

RESULTS AND DISCUSSION 

Data on t h e   r o l l   s t a b i l i t y  were obtained  for  the model t e s t ed   fo r  a 
Mach  number range of 0.9 t o  2.3. The Reynolds number of t he   t e s t  ranged 
from 20 x lo6 t o  114 x lo6 based on the  length of the body. Variation 
of the Reynolds number with Mach  number f o r  this t e s t  i s  shown i n   f i g -  
ure 6. Plots of the t h e  h is tor ies  of the model f l igh t   a re   p resented   in  
figures 7 and 8 as  the  variation of the  velocity, Mach number, a l t i tude ,  
and dynamic pressure  with  time. 

Presented i n   f i g u r e  9 are  three  typical  portions of the  telemeter 
record  received from t h i s   f l i g h t .  A s  may be  seen i n   f i g u r e  g(a), a r o l l  
instabi l i ty   occurred a t  a Mach  number  of 2.05.  Subsequent to   the   d iver -  
gent  roll   velocity  oscil lation  encountered a t  a Mach  number of  2.0'3, the 
model exhibited a self-sustained  osci l la t ion  in   the  rol l   veloci ty   char-  
acterized by  two predominant frequencies. (See f i g .  9. ) T h i s  s e l f -  
sustained  osci l la t ion  in   the  rol l   veloci ty  was present  throughout  the 
remainder of t h e   f l i g h t .  The variation  with time of the lower  frequency 
of the  rol l ing  veloci ty  the  half-amplitude of the  rol l -veloci ty  9' 
envelope, and the mean value of the  roll-velocity envelope $Im are  pre- 
sented in   f i gu res  10, 11, and 12,  respectively. As may be seen i n   f i g -  
ure 10, the  frequency of the   ro l l   ve loc i ty  increased  rapidly  during 

the  divergent   rol l   ins tabi l i ty   to  37 cycles  per second a t  a Mach  number 
of 1.90 (t = 8.4 sec)  but  as  the model velocity  decreased t o  a Mach 
number of 0.74 (t = 8.4 sec)  the  frequency  decreased  to 10 cycles  per 
second. The half-amplitude of the  roll-velocity envelope ( f ig .  11) 
increased  during  the roll i n s t a b i l i t y   t o  500 degrees  per  second a t  a Mach 
number  of 1.90 (t = 19.7 sec)  but as the   osc i l la t ion  became s e l f -  
sutained  the  half-amplitude of the  roll-velocity envelope  decreased 
rap id ly   to  200 degrees  per second, osc i l la ted  between 200 and 300 degrees 
per second, then  decreased t o  200 degrees  per  second a t  a Mach  number 
of 0.74 (t = 19.7 sec) .  Although the  frequency and amplitude  of  the self- 
sustained  osci l la t ion were large  (fig.  12), the mean amplitude of the r o l l  
velocity Grn was less   than t20 degrees  per second  from model-booster  sepa- 

(9 

ration, t = 3.3 seconds, un t i l   t he  model coasted  to a Mach  number of 0.86. 
Below a Mach  number of 0.86,  the mean amplitude of the   ro l l   ve loc i ty  
increased t o  a value of approximately 200 degrees  per  second. T h i s  
increase  in   the mean amplitude of the   ro l l   ve loc i ty  below t h i s  Mach nun- 
ber  cannot be explained. Another mode of motion not  considered  in  the 
analysis, a possible  reduction  in  the missile r o l l  damping contributed 
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by  the  rollerons,  aerodynamic  nonlinearities,  or  other  effects  may  have 
produced  this  increase in  mean  amplitude  of  the  roll  velocity.  It  may 
be  seen  from  figures 10, 11, and 12 that  although  the  model  experienced 
a divergent  roll  oscillation  produced  by  the  rollerons  and  then a self- 
sustained  oscillation  throughout  the  remainder  of  the  flight  the  roll 
rate  was  stabilized  for  these  test  conditions  within f20 degrees  per 
second  through a Mach  number  range  of 0.9 to 2 . 3 .  

Integration  of  the  roll-rate  oscillation  was  performed  to  determine 
the  roll  amplitude  experienced  by  the  model.  This  roll  angle  oscillation 
of  the  model  varied  from  approximately t2.5' at a Mach  number  of 1.6 to 
i-5.O' at a Mach  number  of 0.6. From  the  above-mentioned  results,  it 
appears  that a roll-rate  stabilization  system  utilizing  aerodynamic 
damping  by  gyro-actuated  rollerons  will  give  roll  velocity  stabilization 
and  small  roll  angle  oscillation  with an undesirable  feature  being  the 
divergent,  then  self-sustained,  high-frequency  roll-rate  oscillation. 

Figure 1.3 presents  the  variation  of  the drag coefficient,  based  on 
the  fuselage  cross-sectional  area,  obtained  by  differentiation  of  the 
velocity  obtained  from  the CW Doppler  radar  and an estimated  zero-lift 
drag  coefficient  with  Mach  number. As may be  noted in figure 13 the 
general  shape  of  the  measured  model  drag  is  similar  to  the  estimated 
zero-lift  drag  coefficient  and  is  approximately 8 to 10 percent  higher 
than  the  estimated  zero-lift  drag  coefficient. 

As mentioned  previously in the  "Method  of  Analysis"  section,  design 
charts  were  constructed  to  determine  the  static  and  dynamic  stability  of 
the  rolleron  system.  These  charts  are  shown in figures 14 to 19. The 
diagrams  were  plotted  for  three  gyro-wheel  spin  rates: 10,000 rpm, 
60,000 rpm,  and 100,000 rpm.  For  each  spin  rate  the minimum and  maximum 
values  of  roll  damping, -0.05 and -5.0 ft-lb/radian/sec,  respectively, 
were  used  to  compute  the  stability  boundaries. In each  chart  the  static 
and  oscillatory  boundaries  are  shown  for  three  values  of  control  surface 
damping: -0 .lo, -0.50, and -1 .O ft-lb/radian/sec . 

The  darkened  region in each  figure  represents  the  estimated  opera- 
ting  region  determined  from  reference 4. A slight  increase in the  area 
defined  by  this  reference  was  arbitrarily  made to account  for  factors  not 
considered  by  these  analysis.  The  static  characteristics  are  unaffected 
by  changes  to  the  control  surface  damping;  however,  modifications to the 
control  surface  damping  do  affect  the  dynamic  response.  (See  fig. 14.) 
Examination of figures 14, 16, and 18 indicates  for a control  surface 
damping H of -0.10 ft-lb/radian/sec  and a missile  roll  damping L+ 

of -0.03 ft-lb/radian/sec  that  as  the  gyro-wheel angular velocity %, 
or  angular  momentum (IC = Constant) , is  increased  the  unstable  oscilla- 
tory  stability  region  is  moved so that  the  estimated  operating  'region is 
on the  unstable  side  of  the  oscillatory  boundary.  Note also the  beneficial 

SR 
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ef fec ts  of the  addition of control  surface damping (see  f ig .  16)  and the  
s l i g h t   e f f e c t  of inherent   missi le   rol l  damping on the   osc i l la tory  sta- 
b i l i t y  boundaries. (Compare f ig s .  16 and 17.) A decrease in   the   cont ro l  
surface  effectiveness or increasing  the  spring  constant H of 

the  control  surface w i l l  rotate  the  estimated  operating  region  in a 
counterclockwise  direction,  figure 16, thus moving the  operating  region 
toward the   s tab le   s ide  of the  osci l la tory boundary. Since  the  divergent 
roll osci l la t ion  detected on t h e   f l i g h t   t e s t  model exhibited  the  char- 
ac t e r i s t i c s  which would be obtained by operation on the  unstable  side of 
an o s c i l l a t o r y   s t a b i l i t y  boundary, the  use of these  design  charts  as a 
guide t o  system improvement i s  probably  valid. However, the  exact  posi- 
t i on   i n   t hese   cha r t s  of t h e   f l i g h t   t e s t  model cannot be located  since 
the gyro-wheel spin rate w a s  not measured i n   f l i g h t .  Nevertheless,  the 
presence of an osc i l l a to ry   i n s t ab i l i t y  i s  l i k e l y  because the  estimated 
operating  region f e l l  within  the  unstable  region  (figs.  16 t o  19).  

LsR SR 

Elimination of the dynamic i n s t a b i l i t y  of the  oscil latory  roots may 
be obtained by making one or more  of the  following  system  modifications: 

(a) Increasing  the  control  surface damping H 
%l 

(b) Decreasing the angdar momentum of the gyro wheel 

( c )  Decreasing  the  control  surface  effectiveness o r  increasing 
LsR 

the  spring  constant of the  control  surface 
H% 

Since  modifications  (b) and ( e )  would decrease  the  roll-rate  stabil iza- 
t ion  effectiveness,   these changes  might not be acceptable;  therefore, 
further  research seems necessary to  evaluate  modifications (b)  and ( c ) .  

CONCLUSIONS 

Data obtained from the  f l ight   invest igat ion of a rocket-powered model 
t o  evaluate   the  rol l - ra te   s tabi l i ty  of the Naval Ordnance Test  Station 
SIDEWINDER miss i le   u t i l i z ing  aerodynamic damping  by gyro-actuated  roll- 
erons  indicate  the  following: 

1. A dynamic r o l l   i n s t a b i l i t y  was produced by the  rollerons a t  a 
high  supersonic  speed and continued as a self-sustained  rol l   veloci ty  
osc i l la t ion   for   the  remainder of the   f l igh t .  

,, . ' 

2. The ro l l e rons   ro l l   r a t e   s t ab i l i zed   t he  model within f20 degrees 
per second  through the proposed  operating Mach  number range of 0.9 t o  2 . 3 .  
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3. The  roll-angle  oscillation of the  model  was  less  than *5' through 
the  proposed  operating  Mach  number  range  of 0.9 to 2 . 3 .  

The  flight  test  investigation  substantiated  a  preliminary  roll  analy- 
sis  of  the  rolleron  system  which  indicated  that  a  dynamic  instability  of 
the  oscillatory  roots  was  present.  This  analytical  study also indicated 
system  modifications  which  might  eliminate  this  instability.  These  are 
enumerated  as  follows: 

(a) Increasing  the  control  surface  damping 

(b)  Decreasing  the  angular  momentum  of  the  gyro  wheel 

(c)  Decreasing  the  control  surface  effectiveness  or  increasing  the 
spring  constant  of  the  control  surface. 

Since  modifications  (b)  and (c) would  decrease  the  roll-rate  stabiliza- 
tion  effectiveness,  these  changes  may  not  be  acceptable;  therefore, 
further  research  seems  necessary  to  evaluate  modifications (b) and ( c ) .  

Langley  Aeronautical  Laboratory, 
National  Advisory  Committee  for  Aeronautics, 

Langley  Field,  Va., April13, 1954. 

Clarence A. Brawn,  Jr. 
Aeronautical  Research  Scientist 

/7& 
Martin L. Nason 

Aeronautical  Research  Scientist 

Approved: w p .  i/ v' Joseph A. Shortal ' 
Chief  of  Pilotless  Aircraft  Research  Division 

Is0 
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APPENDIX A 

NACA RM S ~ 5 4 ~ 2 6  

An indication of t he   s t ab i l i t y  of the  rol leron system may be ascer- 
tained by neglecting  the  pitching and yawing motion of the  missile and 
considering  only  the  rolling motion. A sketch of the  rolleron system 
showing the two degrees of freedom ip and €$ and the  sign  convention 
adopted i s  given on f igure 20. The equations of motion are as follows: 

( 

Hinge Moment : 

.. 
H % ~ R  + H b $  + mRZd A - 57 -3 IC% & = 'R?R 

Rewriting  these  equations  using  operator  notation  gives 

Assuming that 4mRZd'$i = 0, then  the  characteristic  equation becomes 

aoD3 + alD 2 + a2D + a 0 3 =  

where 

a0 = IRIX 

a1 = -IRL+ - 4mR2 (IG%) - I X H S ~  

a2 = 4 (IG%) - 4mRZdL 

"3 = LpS, + 4Lh ('G%) 

?R + L+%R - IXH% - 



NACA RM SL54D26 - 13 

A stable  system  will  result  if,  and  only  if,  the  following  relation- 
ships  between  the  coefficients  of  the  above  polynomial  are  satisfied  at 
all  times:  (See  ref. 3 for  a  formal  derivation  of  these  conditions.) 

“0 > 0 

a1 > 0 

ala2 - %a3 > 0 (oscillatory  stability  boundary) 

a3 > 0 (static  stability  boundary) 

The  stability  boundary  plots  shown  in  figures 14 to 19 are  based on 
the  above  relationships  and  were  calculated  using  the  measured and invar- 
ient  mass  characteristics  tabulated  below: 

mR = 0.031 slugs 

d = 0.1289 ft 

2 = 0.775 ft 

= 0.0007046 slug-ft2 

I~ = 0.000198 slug-f  t2 

Since  no  reliable  data  exist,  at  the  present  time,  for  the  aerody- 
namic  characteristics (LsR, I+, HsR, and HhR), the  stability-boundary 
plots  were  calculated  using  these  parameters  as  the  principal  variables. 
Each  figure  has  been  plotted  with HsR as  the  ordinate  and LsR as the 

abscissa  for  three  values of control swface damping H8 The  effect 

of  the  inherent  missile  roll  damping L+ and the  gyro-wheel  spin  rate 0~ 
was  determined  by  replotting  each  figure  using  the  expected  operating 
range  of  these  two  variables.  The  probable  range  of and L 

expected in flight  is  represented  by  the  darkened  area in  each  figure. 

R’ 

H% &R 
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Figure 1.- Sketches of model  tested  with SIDEWINDER rollerons. All 
dimensions  in  inches. 
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Figure 3 . -  Photographs of model  tested  with SIDEWINDER rollerons. 
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Figure 4.- Photograph of rol lerons used on model tes ted .  
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L-82276. 1 
Figure 5.- Photograph of model  and  booster p r i o r  to launching. 
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Figure 6.- Variation of Reynolds number, based on  body length,  with 
Mach number. 
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Figure 8.- Variation of dynamic pressure  with time for model tested.  - 
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Figure 10.- Variation of the  roll-velocity f’requency with time f o r  model 
tested. 
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Figure 11.- Variation  of  the  half-amplitude  of  the  roll-velocity  envelope 
with  time f o r  model  tested. 
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Figure 12.- Variation  of  the  mean  value  of  the  roll-velocity  envelope 
with  time  for  model  tested. 
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Figure 14.- Stability-boundary  plots  showing  the  effect  of  control  surface 
damping.  Gyro-wheel  spin  rate, 10,000 rpm; L6 = -0.05 ft-lb/radian/sec. 
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Figure 1-3.- Stability-boundary  plots  showing  the  effect  of  control  surface 
damping.  Gyro-wheel  spin  rate, 10,000 rpm; L@ = -3.0 ft-lb/radian/sec. - 
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Figure 16.- Stability-boundary  plots  showing  the  effect of control  surface 
damping.  Gyro-wheel  spin  rate, 60,000 rpm; L,+ = -0 .O5 ft-lb/radian/sec . 
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Figure 1.7.- Stability-boundary  plots  showing  the  effect  of  control  surface 
damping.  Gyro-wheel  spin  rate, 60,000 rpm; Lq = -5.0 ft-lb/radian/sec. 
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Fi,o;ue 18.- Stability-boundary  plots  showing  the  effect  of  control surface 
damping.  Gyro-wheel spin rate, 100,000 rpm; L@ = -0.05 ft-lb/radian/sec. 
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Figure 19.- Stability-boundary plots showing  the  effect  of  control  surface 
damping.  Gyro-wheel  spin  rate, 100,000 rpm; Le = -5 .O ft-lb/radian/sec. - 
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Figure 20.- Sketch of the SIDEWINDER missile  showing  rollerons  and  the 
assumed  positive  directions of moments  and  angles. 


